Existence of Solution for a Nonlinear Fractional Order Differential Equation with a Quadratic Perturbations
نویسندگان
چکیده
In this work, we prove the existence of a solution for initial value problem nonlinear fractional differential equation with quadratic perturbations involving Caputo derivative ( cDα0+−ρt cDβ0+)(x(t)f(t,x(t)))=g(t,x(t)),t∈J=[0,1],1<α<2,0<β<α( cD0+α−ρt cD0+β)(x(t)f(t,x(t)))=g(t,x(t)),t∈J=[0,1],1<α<2,0<β<α conditions x0=x(0)f(0,x(0))x0=x(0)f(0,x(0)) and \\x1=x(1)f(1,x(1))x1=x(1)f(1,x(1)). Dhage's fixed-point theorem was used to establish existence. As an application, have given example demonstrate effectiveness our main result.
منابع مشابه
Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExistence of Solutions for a Nonlinear Fractional Order Differential Equation
Let D denote the Riemann-Liouville fractional differential operator of order α. Let 1 < α < 2 and 0 < β < α. Define the operator L by L = D − aD where a ∈ R. We give sufficient conditions for the existence of solutions of the nonlinear fractional boundary value problem Lu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) = 0.
متن کاملexistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
this paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. we show that it has at least one or two positive solutions. the main tool is krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExistence of Positive Solutions for a Nonlinear Fractional Differential Equation
Using the Schauder fixed point theorem, we prove an existence of positive solutions for the fractional differential problem in the half line R+ = (0,∞): Du = f(x, u), lim x→0+ u(x) = 0, where α ∈ (1, 2] and f is a Borel measurable function in R+ × R+ satisfying some appropriate conditions.
متن کاملA solution of nonlinear fractional random differential equation via random fixed point technique
In this paper, we investigate a new type of random $F$-contraction and obtain a common random fixed point theorem for a pair of self stochastic mappings in a separable Banach space. The existence of a unique solution for nonlinear fractional random differential equation is proved under suitable conditions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in nonlinear analysis
سال: 2022
ISSN: ['2636-7556']
DOI: https://doi.org/10.53006/rna.1124961